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PREFACE

Statistical Reasoning in the Behavioral Sciences is emphatically concerned with students’ under-
standing of statistical logic and procedures, as well as an understanding of what happens when
the strict requirements of statistical theory meet the circumstances of real-world data. Regardless
of one’s academic field, it is important that students understand the interplay between statisti-
cal questions and answers and research questions and answers so that students see that statistics
really has significance for their discipline. Thus, throughout the text, we interweave aspects of
experimental design with the statistical topics to which they are closely related. We try to be espe-
cially clear on those points in inferential statistics that tend to be stumbling blocks. At the same
time, we give full treatment in the first half of the text to descriptive statistics in the belief that
once inference is done, one must return to the descriptive measures to assess the meaning of the
inquiry; both concepts must be fully understood.

The fourth, fifth, and sixth editions of Statistical Reasoning followed the recommendations of
the APA Task Force on Statistical Inference (Wilkinson et al., 1999) and we continue to do so in
the seventh edition. This includes greater emphasis on effect size, power, and confidence intervals.
Beginning with Chapter 14, measures of effect size (both d family and r family measures) are
integrated with the material on hypothesis testing.

The text should serve very well for a one-semester course. Even so, there is more material
than can be covered in most one-quarter or one-semester courses. The Instructor’s Manual offers
suggestions for adapting the book to particular needs.

Features New to the Seventh Edition

In many introductory courses, instructors require that students learn how to use computers to work
statistical problems. Thus, starting with the sixth edition and continuing with the seventh edition,
we have added instructions for the use of the statistical software package SPSS. Step-by-step
instructions are provided as well as numerous screen shots so that students may easily use the
software. We have also made an attempt to update some of the example and end-of-chapter prob-
lems in the textbook. In addition, we have also added various photos to the textbook to further
engage students and enhance learning. A main organizational change was splitting Chapter 12
from the sixth edition into two chapters for the seventh edition. Specifically, Chapter 12 now
focuses primarily on the one sample z test while the new Chapter 13 develops understanding of
the one sample t test. We felt that separating the material into two chapters can make the material
easier to teach and easier for students to synthesize. The chapter on chi-square still appears after
the chapters on ANOVA in order not to interrupt the presentation of statistical methods used with
quantitative variables (from the single-sample t test through ANOVA).

Although we demonstrate how to use a powerful, user-friendly software package, it is impor-
tant to highlight that we do not sacrifice any of the material dealing with the conceptual under-
standing of a statistical procedure. For example, after thoroughly describing the logic behind a
procedure, we complete a problem step-by-step using raw data and formulas, followed by an
interpretation of the results. Only after adequate conceptual coverage and a complete example do
we demonstrate how to use SPSS (i.e., entering data, navigating menus, and using dialog boxes)
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viii PREFACE

to obtain the same results in seconds. For instructors who prefer not to cover SPSS, these sections
can be skipped without disrupting the continuity of a chapter.

Pedagogy

Statistical Reasoning in the Behavioral Sciences includes the following pedagogical features:

• learning objectives at the beginning of each chapter,

• a summary at the end of each chapter to reinforce what has been presented,

• key terms and concepts that are boldfaced at their first occurrence in each chapter and listed
again for review at the end of each chapter,

• the presentation of definitions, symbols, and equations in the margins of the text so that the
student may easily identify important new material,

• special boxed sections called Points of Controversy that introduce students to topical and/or
current issues to let them see that statistics is an evolving, vital area of inquiry, and

• review of basic mathematical propositions in an appendix.

Some texts present chapters on correlation and regression after the chapters on hypothesis
testing. However, we firmly believe that the material on correlation should come first so that we
may more fully develop the material on dependent-groups designs and the r family of measures
of effect size.

Finally, many students who enroll in introductory statistics do so with great anxiety. Many
statistics textbooks can be written in a very formal and stodgy style and some lack any visual
material other than graphs of frequency distributions and mathematical tables and formulas. With
an emphasis on statistical reasoning, our user-friendly textbook continues to be written in an
informal, conversational style. We include a few carefully chosen mathematical cartoons and pho-
tographs with educational captions with hopes that they will make using the book more enjoyable
and less frightening to students.

Homework and Test Problems/Instructor’s Manual

There are numerous problems at the end of each chapter. Some give practice in problem-solving
technique; others require the use of critical judgment. Answers to the odd-numbered problems are
in an appendix at the end of the text. Answers to the even-numbered problems are in the Instruc-
tor’s Manual so that instructors may assign the problems as homework or in-class exercises.
The Instructor’s Manual also contains over 700 additional questions. They include several hun-
dred multiple-choice questions for quizzes and several data sets in each chapter appropriate for
examinations.

The Instructor’s Manual is available to instructors at www.wiley.com/college/king.
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1
Introduction

When you have finished studying this chapter, you should be able to:

• Define statistics as a specialization within the field of mathematics;

• Explain the difference between descriptive and inferential statistics;

• Understand that the term statistic has a second meaning—a descriptive index of a sample—and
know the difference between a statistic and a parameter;

• Explain the role of applied statistics;

• Understand the difference between a research question and a statistical question and the dif-
ference between a statistical conclusion and a research conclusion;

• Understand that statistical techniques are tools that are only as good as the individual who uses
them, but that sometimes even good researchers make incorrect statistical conclusions;

• Understand the difference between variables and constants and the difference between a dis-
crete variable and a continuous variable;

• Recognize measurements as being on one of four scales—nominal, ordinal, interval, or
ratio—and understand that not all numbers can be treated alike; and

• Appreciate that to learn statistics you may have to read and study differently than for other
subjects.

Is statistics important to people’s lives? Consider the following two research studies.

Example 1

In early 1987, the U.S. Food and Drug Administration (FDA) was faced with an unprecedented
situation. Thousands of people were dying of acquired immunodeficiency syndrome (AIDS), a
relatively new sexually transmitted infection caused by the human immunodeficiency virus. The
number of new cases of AIDS was increasing so rapidly that the Public Health Service was pre-
dicting that more than 50,000 Americans would soon be dying of the infection every year. Not
only was there no known cure, but there was not even a drug available to slow the progression
of the infection. However, early clinical trials of an experimental antiviral drug known then as azi-
dothymidine (AZT) were promising. Only 1 of 145 AIDS patients on AZT had died, compared
to 19 of 137 patients in a control group given a placebo (a substance that is medically without
effect).

The process of approval of a new drug is typically very slow (8.8 years, on average), and sev-
eral more years of clinical trials were scheduled. There were medical questions remaining to be

1
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answered. What was the optimal dose? For how long would the drug continue to thwart the
virus? Would it prove to have toxic side effects? There were ethical questions as well. Was it
morally right to withhold from other patients a drug that seemingly prolonged lives? There was
also an important statistical question, one that had to be answered before the medical and ethical
questions could be addressed. Among AIDS patients using AZT, was the fewer number of deaths
the result of the drug, or was it due just to chance? Even if the FDA had given both groups of
AIDS patients the placebo or both AZT, it would be unlikely that the same number of deaths
would have occurred in both groups. One would expect a difference due to chance. Were the
observed differences in deaths great enough to warrant early approval of the drug? Statistical
tests showed that the difference between the two groups was so great that the probability of it
having occurred by chance was less than 1 in 1,000 (Fischl et al., 1987). Armed with these statis-
tics, the FDA gave final approval for the use of AZT in March 1987 after only 21 months of testing.
The FDA’s decision to give early approval for AZT was an ethical one designed to prolong lives,
but it was made only after statistical analysis.

Example 2

For women, the ovaries are a source of two important hormones: estrogen and progesterone. As
women approach age 50, their supply of eggs within the ovaries nears zero, they have their last
menstrual period (called menstruation) and the ovaries atrophy. The loss of estrogen and pro-
gesterone was believed to cause many serious problems (including hot flashes and weaker bone
density), and thus for many years the standard medical treatment for postmenopausal women
was hormone replacement therapy.

In 1997, a large study was begun to compare the long-term effects of a popular hormone
replacement drug (Prempro) versus a placebo. It was expected that Prempro would have very
beneficial effects in postmenopausal women. The study was originally designed to last 8 years,
but it was ended after 5 years. The reason was that the women given Prempro were experiencing
a greater number of heart attacks, strokes, blood clots, and breast cancers (Manson et al., 2003).
Statistical analysis had shown that the greater number of bad outcomes experienced in the group
given Prempro compared to the group given the placebo had a low probability of occurring by
chance (i.e., it was more likely due to the hormone replacement therapy). The results of this study
have been a major influence on how postmenopausal women receive medical treatment today.

Statistics is used not only in making important decisions, as in the cases of AZT and hormone
replacement therapy, but also in our everyday lives. When your professor organizes test scores
into a grade distribution and calculates the class average, he or she is using statistics. If you have
ever kept track of the number of gold, silver, and bronze medals won by athletes in Olympic
games competition, you have used statistics. Without statistics, data collected in our everyday
observations or in carefully controlled experiments would have very little meaning.

What do we mean when we use the word statistics? In ordinary language, most people use
the term statistics to refer to any set of facts that involve numbers (e.g., “birth statistics,” “crime
statistics,” “unemployment statistics”). When used like this, statistics is a plural word (e.g., “The
crime statistics are going to be reported on Wednesday”). However, in this section we refer to
statistics as a science, a specialization within the field of mathematics. Statistics is the science ofstatistics the science of

classifying, organizing,
and analyzing data (for
another meaning, see
Section 1.2)

classifying, organizing, and analyzing data. In this sense, the word is singular (e.g., “Statistics is
a science”). We introduce yet another meaning of the term statistics in Section 1.2.

The goal of this book is to teach you the techniques of statistics used by researchers to analyze
data. Some of these techniques will be very simple, and others will be more complex. In learning
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statistics, it is useful to divide the subject into two parts: descriptive statistics and inferential
statistics.

1.1 Descriptive Statistics
In a new school, a biology instructor is thinking about what the first group of students will be
like. How much biological information will they already have? She does not wish to bore them by
underestimating their knowledge, but she also does not want to lose them by assuming too much.
Should she begin with a review of fundamentals? How extensive? In what areas? It would also
be helpful to know whether the students vary widely in the extent of their biological knowledge.
If they do, the instructional method may need adjustment.

Let us suppose that the biology instructor administers a nationally developed test of biological
knowledge to her students at the first class meeting. Let us also assume that she is able to learn how
students in similar educational circumstances perform on this test. She discovers, for example,
that Bob Beaver’s score in zoology is better than that of 90% of students in the same grade and that
only 15% of students get lower scores than Steve Smith’s.

Because the names in her gradebook are in alphabetical order, the scores are not in numerical
order, so she first organizes the scores in descending order and then finds the class average for each
subtest and for the complete test. Then she compares the class averages with the performance data
for other similar students. She finds that as a group her students are approximately at the expected
level in botany and that their performance is superior in zoology. This knowledge will help her
go about teaching.

In reorganizing and comparing her students’ scores, our instructor is making use of techniques
that are part of the body of descriptive statistics. The purpose of descriptive statistics is to orga- descriptive statistics its

purpose is to organize and
summarize observationsnize and to summarize observations so that they are easier to comprehend.

1.2 Inferential Statistics
What is the attitude of the voting public toward capital punishment? A second branch of statistical
practice, known as inferential statistics, provides the basis for answering questions of this kind.
Pollsters would find it impossible to ask all registered voters a question like the one about cap-
ital punishment, so they ask only a small portion of voters and then use the answers to estimate
the attitudes of all voters. The purpose of inferential statistics is to draw a conclusion (an infer-

inferential statistics its
purpose is to draw a con-
clusion about conditions
that exist in a population
from study of a sample

ence) about conditions that exist in a population (the complete set of observations) by studying a

population the complete
set of observations
about which an inves-
tigator wishes to draw
conclusionssample (a subset) drawn from the population. Because of chance factors associated with drawing

sample a subset of a
population

a sample, the outcome, like any estimate, is subject to error. However, if the sample of voters
selected for study has been chosen according to statistical principles, it is possible to know what
margin of error is involved.

We previously defined statistics as a science. However, the term statistic has another meaning
that we will use throughout the book. A statistic is a descriptive index of a sample. The same

statistic a descriptive
index of a sample (for
another meaning, see
page 2.)index, if descriptive of a population, is called a parameter. Thus, the average of a sample of

parameter a descriptive
index of a population

scores is a statistic; the average of a population of scores is a parameter. In inferential statistics,
we will be interested in estimating population parameters from sample statistics.

Here is another example of how inferential statistics is used to evaluate the outcome of an
experiment. Is it possible that a certain drug has an effect on the speed of learning? Let us suppose
that an investigator decides on the kind of subjects she wishes to study. As in the first example,
it is impossible to administer the drug to everyone in the population, so the investigator selects at
random two samples of 25 subjects each. Random sampling is a procedure that ensures that all

random sampling a pro-
cedure that ensures that
all samples of a particular
size have an equal chance
of being selectedsamples of a particular size have an equal chance of being selected and thus eliminates any bias
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when we draw a sample. The investigator then administers the drug to one of the groups and a
placebo to the other group. She gives both groups a learning task and treats both alike in all ways.
She finds that the average learning scores of the two groups differ by 5 points.

We would expect some difference between the groups even if both received the drug because
of chance factors involved in the random selection of the groups. The question that the experi-
menter must ask herself is whether the observed difference is within the limits of expected varia-
tion. If certain preconditions have been met, statistical theory can provide the basis for an answer.
If the experimenter finds that the obtained difference of 5 points is larger than can be accounted
for by chance variation, she will infer that other factors must be at work. If examination of her
experimental procedures reveals no reasonable cause for the difference other than the deliber-
ate difference in the experimental treatment, she may make an inference about the effects of the
drug in the population. This is the same type of reasoning that the FDA investigators used to
conclude that AZT prolonged the lives of patient with AIDS. Their conclusion was not about
just those patients in the study. It was about the effects of AZT if it were given to all persons
with AIDS.

1.3 Our Concern: Applied Statistics
Statistics originated from the work of mathematicians and others who were well grounded in
mathematics. However, the mathematical development of statistics is not what this book is about.
Instead, we will be concerned with applied statistics. Our outlook will be that of investigators who
need to know statistics to appreciate reports of findings in their professional fields or who must
apply statistics in their own work. We may think of ourselves as statistical technicians, therefore.
This includes biologists, educators, psychologists, engineers, sociologists, medical researchers,
and business executives. All these professionals and many more regularly find that statistical
procedures can be helpful in their work.

Applied statistics is a tool and neither a beginning nor an end in itself. For any subject area,
scientific study begins with an investigator posing a question based on the results of previous
studies and theoretical considerations. This is the research question, a question of fact concerningresearch question a

question of fact about
the subject matter under
investigation

the subject matter under investigation. Suppose, for example, that we are interested in whether
reaction time depends on the intensity of a stimulus.

We must next decide on the specifics necessary to explore the question. We may decide to
assign 50 available subjects at random to two groups of 25, one of which will receive a strong
stimulus and the other a weaker one. Other designs are possible, but the experimental design will
depend, for the most part, on the research question. For example, if we believe that reaction time
decreases as stimulus intensity increases, we could test reactions to more than two intensities of
the stimulus and assign fewer subjects to a larger number of groups.

The variable that is systematically manipulated by the investigator is called the independent
variable (e.g., stimulus intensity). The variable that is measured is called the dependent variable

independent variable the
variable that is systemat-
ically manipulated by the
investigator

dependent variable the
variable that is measured

(e.g., reaction time). It is important that all other factors that might affect the dependent variable
(confounding variables) be the same for all groups. For example, it would be important to see that

confounding variables
factors (other than the
independent variable) that
might affect the dependent
variable

the subjects have been tested at approximately the same time of day to avoid having one group
fresh and alert while the other is tired and inattentive. Having designed our study, we are finally
ready to make observations. We measure the reaction time of each subject and record it.

After recording our measurements, we calculate the average reaction time for each group,
see that they differ, and raise a statistical question: Is the average reaction time under the two
conditions so different that chance variation alone cannot account for it? A statistical question

statistical question a
question about a numerical
aspect of the observations

is a question about a numerical aspect of the observations. After applying a statistical procedure,
we arrive at a statistical conclusion. A statistical conclusion is a conclusion about a numerical

statistical conclusion a
conclusion about a numer-
ical property of the data property of the data. For example, as a result of applying the appropriate statistical procedures in
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our hypothetical experiment, we might be able to conclude that the average reaction times under
the two conditions are so different that it is not reasonable to believe that chance alone could
account for it.

Now we return to the research question. If we had carefully arranged the conditions of the
study, it may be possible to conclude that intensity of the stimulus does make a difference, at
least under the conditions that held in this experiment. This is our final step, and it is a research
conclusion. A research conclusion is a conclusion about the subject matter. In our initial example research conclusion a

conclusion about the
subject matter

about AZT, the statistical conclusion was that the number of deaths in the two groups differed
by beyond what would have been expected by chance. The research conclusion was that the
difference was due to AZT. Although the research conclusion derives partly from the statistical
conclusion, we see that other factors must be considered. The investigator, therefore, must weigh
both the statistical conclusion and the adequacy of the research design in arriving at the research
conclusion.

It is important to understand that statistical procedures are only a middle step in the investi- statistical procedures
only a middle step in the
investigation of a research
question

gation of a research question. If an investigator has not carefully controlled for all confounding
variables, it is possible to make a correct statistical conclusion and at the same time make an
incorrect research conclusion. Such was the case in a well-known study by Joseph Brady and
some colleagues at Johns Hopkins University (Brady, Porter, Conrad, & Mason, 1958). They
investigated the effects of stress on the development of ulcers in four pairs of monkeys. Each
pair was locked into adjacent chairs during testing. One monkey in each pair, designated the
“executive” monkey, could avoid a strong electric shock by pressing a lever that postponed the
shock for 20 seconds. Whenever the executive monkey did receive a shock, the other monkey
in the pair, called the “yoked” control monkey, also received a shock (which it could not avoid).
The investigators assigned monkeys to the executive group based on their high rates of lever
pressing in previous studies.

The executive monkeys developed ulcers, but the yoked monkeys did not, even though they
received identical shocks. The difference was so great that it was unlikely that the results occurred
by chance (the statistical conclusion). Because they believed that they had controlled for all other
factors, Brady and his colleagues concluded that it was the continuous stress of having to decide
how often to press the lever to avoid shock that caused the ulcers in the executive monkeys (the
research conclusion).

Later studies were unable to replicate the results. Moreover, it was found that animals selected
for high rates of responding were more susceptible to developing ulcers than were other animals
(Weiss, 1971). When monkeys that did not differ in activity level were tested together, the exec-
utive monkeys developed less severe ulcers (Foltz & Millett, 1964; Natelson, 1976). We now
know that in general, control over an aversive event reduces the stress the event causes (Taylor,
1991). The original investigators had unknowingly biased the outcome of their experiment by not
randomly assigning the monkeys to the two conditions and thus reached an incorrect research
conclusion.

1.4 Variables and Constants
When we conduct a study, we must often consider several variables and constants. A variable is variable a characteristic

that may take on differ-
ent values

a characteristic that may take on different values. Typical examples are intelligence test scores,
number of errors on a spelling test, height, marital status, and gender. The concept of a variable
does not imply that each observation must differ from all the others. All that is necessary is the
possibility of difference. Suppose, for example, that a school nurse is interested in the height of
seventh grade boys in Lincoln Junior High School. If she selects a sample of three for study and
finds that they are all the same height, it is still proper to refer to height as a variable because the
possibility of getting students of different height existed.
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On the other hand, her decision to study height only among the seventh grade students means
that grade level is a constant rather than a variable in this inquiry. When, in terms of a particular
study, it is not possible for a characteristic to have other than a single value, that characteristic is a
constant. Constants limit the applicability of the results of a study. In the school nurse’s situation,constant a characteristic

that can have only one
value (other values are not
possible)

for example, the sex of the students (male), the school (Lincoln), and the grade level (seventh) are
all constants. Even if the nurse had taken a larger sample, the conclusions that she would draw
could apply for sure only to seventh grade boys in that school.

Variables may be either discrete or continuous. A discrete variable can take on only certaindiscrete variable a vari-
able that can take on only
certain values

values. If we count the people at a meeting, we might learn that 73 persons attended, or 74, but
no value between these two figures is possible. The values are exact numbers. Other examples
include the number of multiple-choice questions answered on an exam or the number of lever
presses performed by a rat in a learning experiment.

A continuous variable can take on any value (within whatever limits its values may range). Incontinuous variable a
variable that can take
on any value (within the
limits that its values may
range)

measuring length, for example, it is possible for an object to be 3 ft. 1 in. or 3 ft. 2 in. long, or any
conceivable length in between. A continuous variable has no gaps in its scale. Other examples
include weight, age, and temperature.

Even though a variable is continuous in theory, the process of measurement always reduces it
to a discrete one. For example, if we measure weight to the nearest tenth of a pound, a weight of
18.3 pounds means that the object is closer to 18.3 pounds than it is to 18.2 pounds or 18.4 pounds.
The value of 18.3 pounds is an approximate number. The actual weight is somewhere between
18.25 and 18.35 pounds. In this example, our recorded measurements form a discrete scale in
steps of one-tenth of a pound. When measuring a continuous variable, our level of accuracy is
limited by our recording equipment, and it is up to the investigator to determine the degree of
precision appropriate to the problem at hand. Your height may be 67 and 7/16 in., but who cares?
For most of us, measurement to the nearest half-inch is fine.

Typical statistical computations involve both exact and approximate numbers—for example,
dividing the sum of the scores (usually the sum of approximate numbers and thus itself approxi-
mate) by the number of cases (an exact number) to produce an average. In computations involving
both exact and approximate numbers, the accuracy of the answer is limited by the accuracy of the
approximate numbers involved. For example, if we measure weight to the nearest tenth of a pound
and find that the total weight of three objects is 67.0 pounds, it would be misleading to report
the average weight (67.0/3) as either 22.333333 pounds (the output of the common eight-digit
display calculator) or 22 pounds. Because the approximate number is reported to the nearest
tenth of a pound, the reported average weight should be 22.3 pounds.

When working with a series of statistical computations involving approximate numbers, it
is a good idea to keep a little more accuracy than we think is the minimum to which we are
entitled (perhaps one extra decimal place) because in a sequence of computations it is possible
to compound inaccuracy. Once the computation is completed, we should round back to the least
accurate of the numbers used. If the last digit is greater than 5, round up; if it is less than 5, round
down. When rounding a number that ends exactly with the numeral 5, you should always round
to the nearest even number. This avoids introducing a bias in your calculations. (Sometimes you
will round up and other times down rather than always in the same direction.) For example, if
rounding to the nearest tenth, 1.35 becomes 1.4, as does 1.45.

1.5 Scales of Measurement
Measurement is the process of assigning numerals to observations. This is not done arbitrarily,measurement the process

of assigning numerals to
observations

but in a way so that the numbers are meaningful. How do we do this? Variables do not all have the
same numerical properties. In measuring weight, we are accustomed to the idea that 40 pounds
is twice as much as 20 pounds and that the difference between 10 and 20 pounds is the same as
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that between 60 and 70 pounds. Similarly, if a baseball team has won 40 games and another only
20, we can say that the first has won twice as many games as the second team. However, if we
put baseball teams in order of their standing in the league, we should not think that the number
one team is twice as good as the number two team, nor would we expect that the difference in
abilities between the first and second team is necessarily the same as that between the second and
third team. It is apparent that numbers have a different significance in these two situations. To
help distinguish different kinds of situations, the psychologist S. S. Stevens (1946) identified four
different scales of measurement. You will find that numbers are treated differently depending on
their scale of measurement.

Nominal Scale

Some variables are qualitative in their nature rather than quantitative. For example, eye color,
types of cheese, and party of political affiliation are examples of qualitative variables. The sev-
eral categories of such a variable form a nominal scale (the Latin root of nominal means “name”). nominal scale mutually

exclusive and exhaustive
categories differing in
some qualitative aspect

The only requirements of a nominal scale are that the categories be mutually exclusive (the obser-
vations cannot fall into more than one category) and exhaustive (there must be enough categories
for all the observations). Brown and blue eyes are mutually exclusive categories for eye color;
but Ford, General Motors, Toyota, Chevrolet, and Honda are not mutually exclusive categories
for types of cars (Chevrolets are made by General Motors). With a nominal scale, there is no
question about one category having more or less of any particular quality; all categories are sim-
ply different. We may use numbers to identify the categories of a given scale. For example, we
might identify three cheeses as Cheese No. 1, Cheese No. 2, and Cheese No. 3. Numbers used in
this way are simply a substitute for names and serve only for purposes of identification. Numbers
on football jerseys similarly indicate only the position of the player (e.g., offensive line, offensive
backfield). If one football player wears the number 10 on his back while another wears the num-
ber 20, there is no implication that the second player is “more than” the other in some dimension,
let alone that he has twice as much of something (Stine, 1989).

Ordinal Scale

At the next level of complexity is the ordinal scale (the Latin root means “order”). In this type ordinal scale has the
properties of a nominal
scale, but in addition
the observations may
be ranked in order of
magnitude (with nothing
implied about the differ-
ence between adjacent
steps on the scale)

of measurement, the categories must still be mutually exclusive and exhaustive, but they also
indicate the order of magnitude of some variable. With a nominal scale, the outcome of clas-
sification is a set of unordered categories. With the ordinal scale, it is a set of ranks. A classic
example is military rank. Sergeant is greater than corporal, which is in turn greater than private.
Another example is academic standing—freshman, sophomore, junior, and senior. In yet another
example, a supervisor may estimate the competence of seven workers by arranging them in order
of merit. The only relation expressed in a series of numbers used in this way is that of “greater
than.” We may use numbers for the ranks but it is not necessary. Among persons ranked 1, 2, and
3, the first person has a greater degree of merit than the person ranked second, and the second
person has greater merit than the third. However, nothing is implied about the magnitude of dif-
ference in merit between adjacent steps on the scale. Furthermore, nothing is implied about the
absolute level of merit; all seven workers could be excellent, or they could be quite ordinary.

Interval Scale

The next major level of complexity is the interval scale. This scale has all the properties of the

interval scale has all the
properties of an ordinal
scale, and a given dis-
tance between measures
has the same meaning
anywhere on the scaleordinal scale, but with the further refinement that a given interval (distance) between scores has
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373°
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50°

FIGURE 1.1 Three temperatures represented on the Celsius and Kelvin scales.

the same meaning anywhere on the scale. Thus, it could be better called an equal-interval scale.
Examples of this type of scale are degrees of temperature on the Fahrenheit or Celsius scales. A
10∘ rise in a reading on the Celsius scale represents the same change in heat when going from
0∘ to 10∘ as when going from 20∘ to 30∘. The limitation of an interval scale is that it is not
possible to speak meaningfully about a ratio between two measurements. We illustrate this point
in Figure 1.1. The top of this illustration shows three temperatures in degrees Celsius: 0∘, 50∘,
and 100∘. It is tempting to think of 100∘C as twice as hot as 50∘. However, the value of zero on
this scale is simply an arbitrary reference point (the freezing point of water) and does not imply
the absence of heat. Therefore, it is not meaningful to assert that a temperature of 100∘ Celsius is
twice as hot as one of 50∘ or that a rise from 90∘ to 99∘ Celsius is a 10% increase.

Ratio Scale

A ratio scale possesses all the properties of an interval scale and in addition has an absoluteratio scale has all the
properties of an interval
scale plus an absolute zero
point

zero point. The bottom of Figure 1.1 shows the same three temperatures in degrees Kelvin. This
scale uses the same unit for its intervals; for example, 50∘ of change in temperature is the same
on both scales. However, the Kelvin scale has an absolute zero, the point at which a substance
would have no molecular motion and, therefore, no heat. Thus, 100∘ is twice as hot as 50∘ on the
Kelvin scale (100∘ is only 1.15 times as hot as 50∘ on the Celsius scale). Other examples of ratio
scale measurements are length, weight, and measures of elapsed time. Not only is the difference
between 40 and 41 in. the same as the difference between 80 and 81 in., but it is also true that 80
in. is twice as long as 40 in.

Table 1.1 summarizes the characteristics of the four scales of measurement we have just
discussed.

1.6 Scales of Measurement and Problems
of Statistical Treatment

An understanding of the scales of measurement provides a framework for appreciating some
problems in the interpretation of data. The first thing we need to realize is that in the behav-
ioral sciences, there are many measuring instruments that lack equal intervals and an absolute
zero point. Consider, for example, a spelling test. Easier items might be words such as garden,
baseball, and rowboat. But we might also find perceive, complacency, and perhaps even some
stumpers like gauge, accede, and abscissa. A score of zero on this test means that the person
could not spell the simplest word on the list, but what if simpler words had been on the test, such
as cat, run, and bat? Our spelling test, then, does not have an absolute zero point because zero on
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Table 1.1 Scales of Measurement and Their Characteristics

SCALE PROPERTIES EXAMPLES

Nominal Mutually exclusive and exhaustive categories differing in some qualitative aspect. Sex, ethnic group, religion, eye
color, academic major

Ordinal Scale has the property of a nominal scale (mutually exclusive categories) and in
addition has observations ranked in order of magnitude. Ranks, which may be
numerical, express a “greater than” relationship, but with no implication about
how much greater.

Military rank, academic standing,
workers sorted according to merit

Interval Scale has all the properties of an ordinal scale, and in addition, numerical values
indicate order of merit and meaningfully reflect relative distances between points
along the scale. A given interval between measures has the same meaning at any
point in the scale.

Temperature in degrees Celsius or
Fahrenheit

Ratio Scale has all the properties of an interval scale, and in addition has an absolute zero
point. Ratio between measures becomes meaningful.

Length, weight, elapsed time,
temperature in degrees Kelvin

the spelling test does not indicate a total absence of spelling ability. The same is true of midterm
tests, IQ tests, the SAT, and almost all other tests of mental performance.

What about equal intervals? To have equal intervals on our spelling test, we should be able to
state quantitatively just how much more spelling ability is needed to spell garden than to spell
cat and how much more is needed to spell gauge than to spell rowboat. So far, we have found
no objective way to determine when equal numerical intervals on a mental test represent equal
increments in performance. Realization of this situation once caused great concern in statistical
circles. Some people argued that calculating certain statistical variables (such as averages) on tests
of mental abilities could be seriously misleading. Fortunately, the weight of the evidence suggests
that in most situations, making statistical conclusions is not seriously hampered by uncertainty
about the scale of measurement (Norman, 2010). We will consider this matter further in the Point
of Controversy in Chapter 4.

There are, however, several areas where we need to be aware of scale problems to avoid tak-
ing tempting but incorrect positions. For example, we should not say that a person with an IQ of
150 is twice as bright as one with an IQ of 75, or that the difference between 15 and 25 points
on a spelling test necessarily represents the same increment in spelling ability as the difference
between a score of 30 and 40 points on the same test. In psychological measurement, this prob-
lem may be particularly critical when a test does not have enough “top” or “bottom” to differ-
entiate adequately among the group measured. For example, imagine a test of ability that has a
maximum possible score of 50 points and that is too easy for the group measured. For two per-
sons who score 50 points, the score for one may indicate the maximum level of achievement, but
the second person may be capable of a much higher level of performance. The measuring instru-
ment is simply incapable of showing this difference because it does not include items of greater
difficulty.

1.7 Do Statistics Lie?

There are three kinds of lies: lies, damned lies, and statistics.
Benjamin Disraeli, 19th-century British statesman

Do statistics really lie? In the experiment by Brady and his colleagues, the investigators
reached an incorrect research conclusion, but there really was an observed difference between
the executive and yoked monkeys in their susceptibility to developing ulcers. Is it possible to




